Recycled Engine Oil Bottoms as Asphalt Binder Additive

Spring 2015 Expert Task Group

Recycled Engine Oil Bottoms are Liquids at Room Temperature

XRF-Spectrometer

Variation and Complications between and within REOB Suppliers

- 1.5 1.9% Phosphorous
- Sulfur 1.5 - 1.9%
- Calcium
- Iron
- Copper
- Zinc
- Molybdenum

- 7,204 10,901ppm
 - 372 1,838 ppm
 - 704 1,563 ppm
- 4,554 7,213 ppm
- 288 669 ppm

11

REOB Content of Binders

1,208 binder samples received from 38 Agencies

		XRF Analysis ppm			REOB% (08-1001)					
State	Performance Grade	Calcium	Copper	Zinc	Molybdenum	Calcium ppm	Copper ppm	Zinc ppm	Molybdenum ppm	GTR %
IN	64-28	424.3	36.6	417.9	43.4	3	4	7	10	3
WA	64-22	479	48	424.5	44.4	4	5	7	10	3
AL	-	643.4	56.5	469.1	64.2	5	6	8	14	3
WA	64-28	576.6	51.9	480.2	51.8	5	6	8	11	3
IN	58-28	550.6	52.7	501.4	48.5	5	6	8	11	3
ОК	70-28	478	50.6	548.1	44.4	4	5	9	10	3
ОК	64-22 OK	874.1	124	576.6	32.8	8	12	9	8	4
ТΧ	AC 15P	611.4	79.4	591.3	48.5	5	8	10	11	4
ТΧ	AC 5	781.7	84.1	775.3	59.9	7	8	13	13	5
ТΧ	AC20-5TR	-101.1	-8.1	794.7	-2	-1	0	13	1	5
ТΧ	76-22T	-62.6	-8.7	837.9	0.6	-1	0	14	1	5
FL	76-22 AR	26.2	33.3	913.4	10.7	0	4	15	3	6
CFL	64-10	1255	200	933.3	42.1	11	19	15	9	6
AZ	76-22TR	0	18.5	1128.9	0.1	0	3	19	1	7
NE	58-28	-131.5	83.7	1203.8	5.9	-2	8	20	2	8
NE	64-30	-128.6	-14	1523.1	3.7	-2	0	25	2	10
CA	76-22TR	189.7	37.2	1761.7	10.6	1	4	29	3	11
AZ	58-22	1737.3	141	2452.4	64.1	15	14	41	14	16
ТΧ	64-22	34.7	42.9	2558.4	-6.1	0	5	43	0	16
CA	64-28TR	782.5	145	2653.7	45.8	7	14	44	10	17

13

Updated Activities

- Increased accuracy of quantification
- Ongoing round-robin for detection and quantification
- Currently testing LTPP samples

Binders' and Mixtures' Engineering Properties

Two Modification Approaches

• Softening an unmodified PG to another PG

6% **REOB***

*with a single REOB sample

Two Modification Approaches

• Softening an unmodified PG to another PG

• Diluting a unmodified PG

*with a single REOB sample

• DSR High Temp ~9% REOB per PG Grade Drop

- DSR High Temp
 ~9% REOB per PG Grade Drop
- BBR m-Value
 - ~21% REOB per PG Grade Drop

- DSR High Temp
 ~9% REOB per PG Grade Drop
- BBR m-Value
 ~21% REOB per PG Grade Drop
- BBR Stiffness
 ~9% REOB per PG Grade Drop

BBR ∆T_{critical} Spread: PG_{(S)tiffness} – PG_{(m)-creep}

		Exp	loratory Ble	nds	Final Blends
	Base	+PG100-0 +REOB Source 1		+REOB Source 2	+REOB Source 3
	PAV				PAV
	-2.0°C				
	60-30				
Holly 58-28					

BBR $\Delta T_{critical}$ **Spread: PG**_{(S)tiffness} – **PG**_{(m)-creep}

		Exp	loratory Ble	nds	Final Blends
	Base	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3
	PAV				PAV
	-2.0°C 60-30	-0.8°C 0%/20% 69-24			
Holly 58-28		-1 .6°C 0% / 30% 72-20			

BBR ∆T_{critical} Spread: PG_{(S)tiffness} – PG_{(m)-creep}

		Exp	loratory Ble	Final Blends	
	Base	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3
	PAV				PAV
	-2.0°C 60-30	-0.8°C 0% / 20% 69-24	-10°C 20%/20% 59-28	-14°C 20%/20% 51-28	
Holly 58-28		-1.6°C 0% / 30% 72-20	-13°C 25% / 30% 59-25		

BBR $\Delta T_{critical}$ **Spread: PG**_{(S)tiffness} – **PG**_{(m)-creep}

		Exp	loratory Ble	Final Blends	
	Base	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3
	PAV				PAV
	-2.0°C 60-30	-0.8°C 0% / 20% 69-24	-10°C 20%/20% 59-28	-14°C 20% / 20% 51-28	
Holly 58-28		-1 .6° C 0% / 30% 72-20	-13°C 25% / 30% 59-25		-5.1°C 15% / 0% 51-40

24

BBR $\Delta T_{critical}$ **Spread: PG**_{(S)tiffness} – **PG**_{(m)-creep}

		Exp	loratory Ble	Final Blends	
	Base	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3
	PAV				PAV
	-2.0°C 60-30	-0.8°C 0% / 20% 69-24	-10°C 20%/20% 59-28	-14°C 20%/20% 51-28	-5.7°C 15% / 20% 58-33
Holly 58-28		-1.6°C 0% / 30% 72-20	-13°C 25% / 30% 59-25		-5.1°C 15% / 0% 51-40
					-0.2°C 2.5% 59-33

BBR $\Delta T_{critical}$ **Spread: PG**_{(S)tiffness} – **PG**_{(m)-creep}

		Exp	loratory Ble	Final Blends	
	Base	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3
	PAV				PAV
	-2.0°C 60-30	-0.8°C 0%/20% 69-24	-10°C 20%/20% 59-28	-14°C 20% / 20% 51-28	-5.7°C 15% / 20% 58-33
Holly 58-28		-1 .6° C 0% / 30% 72-20	-13°C 25% / 30% 59-25		-5.1°C 15% / 0% 51-40
					-0.2°C 2.5% 59-33
P 22	+0.8°C		-1.7°C	-4.0°C	-2.2°C
В 64-	67-27		61-31	58-29	6% 61-28

26

Awareness of long-term performance

- Utility of PAV to approximate 5-years age
- Poor performance after 5-years *anecdotally* attributed to REOB
- Data from FHWA ALF test sections
 - Top and bottom 1-inch of core extracted & recovered binder

Federal HighwayAdministration

Federal HighwayAdministration

BBR $\Delta T_{critical}$ Spread: PG_{(S)tiffness} – PG_{(m)-creep}

			Exp	Exploratory Blends				
	Base		+PG100-0	+REOB Source 1	+REOB Source 2	+RE Sour	OB ce 3	
	PAV	2 X PAV				PAV	2 X PAV	
Holly 58-28	-2.0°C 60-30	-1.1°C □-29	-0.8°C 0%/20% 69-24	-10°C 20% / 20% 59-28	-14°C 20% / 20% 51-28	-5.7°C 15% / 20% 58-33	-10°C 15% / 20% □-26	
			-1.6°C 0%/30% 72-20	-13°C 25% / 30% 59-25		-5.1°C 15% / 0% 51-40	-10°C 15% / 0% <i>[</i>] 3 4	
						-0.2°C 2.5% 59-33	-2.8°C 2.5% □-29	
BP 64-22	+0.8°C	-1.9°C		-1.7°C	-4.0°C	-2.2°C	-2.9°C	
	67-27 🛛 -23			61-31	58-29	6% 61-28	6% □-23	

DSR Fatigue: Linear Amplitude Sweep (LAST)

Notched Tension: Cracking Strain Tolerance

Ongoing Mixtures' Experimental Design

- <u>"Moisture Damage"</u>
 - Granite- Occoquan, VA
 - Tensile Strength Retained TSR
 - Hamburg Wheel Tracking
 - Repeated With &
 With<u>out</u> Liquid Amine
 Anti-strip or Hydrated
 Lime

- <u>"Structural Performance"</u>
 - ALF 22% RAP Mix
 - Flow Number; confined
 NCHRP 9-30A
 - Dynamic Modulus, |E*|
 - Uniaxial Fatigue Short and Long-Term Aged (loose mix 5 days @ 85°C)
 - Thermal Stress Restrained
 Specimen TSRST Short and
 Long-Term Aged (loose mix 5 days @ 85°C)

Federal HighwayAdministration

 $\boldsymbol{\lambda}$

Fatigue – Effect of REOB

39

Fatigue – Effect of REOB

U.S. Department of Transportation Federal Highway Administration 40

Federal HighwayAdministration

2

42

Thermal Cracking

 $\boldsymbol{\lambda}$

Thermal Cracking

Thermal Cracking

Thermal Cracking

Findings (1 of 5)

- 1. You can readily detect REOB presence
- 2. You can tell how much is there; but you *cannot* tell *exactly* how much is there.
 - Round Robin XRF results may shed more light on this.
- **3.** Effect of REOB depends on base binder (like PPA)
- 4. Variation between REOB suppliers & their samples
 - Same concentration can produce different PG grades

Findings (2 of 5)

- 5. 2 X PAV is a reasonable approximation of 5 years where anecdotal concerns lie (ALF Data)
- 6. REOB softens and reduces tensile strength
 - Binder notched tension (DENT)
 - Decreases mix wet and dry IDT strength
 - Also seen in TSRST
- 7. In 2 of 3 cases, REOB improved <u>binder</u> intermediate temperature parameters for fatigue / strain tolerance
 - 6% and 2.5% REOB blends
 - CTOD and LAST

Findings (3 of 5)

- 8. Rheological "disruption" occurred w/ highest %REOB
 - Differences in Low Temperature m&S
 - Did Not occur in blend with PG100-0 by itself
 - Did occur in blends with high-REOB + PG100-0
 - Made worse by continued aging
 - Alludes to performance deterioration
 - Corroborated by DENT CTOD & LAST & Stripping
 - Forces the issue of compatibility (extenders, rejuvenators, RAP / RAS, WMA...)

Findings (4 of 5)

- 9. **REOB effects on Moisture Sensitivity**
 - TSR ratio, strength and Hamburg performance decreases with increasing REOB when no anti-strip is added
 - REOB did not interfere with liquid anti-strip which improved TSR and Hamburg performance
 - Liquid anti-strip (0.4%) alters IDT strength and Hamburg deterioration more than REOB (2.5%-15%)

Findings (5 of 5)

10.Conclusions

- Low concentrations of REOB did not appear to adversely affect binder and mixture properties
- High concentration of REOB consistent with loss of strength in different binder and mix test methods

11.Recommendations

- Further examination of m & S as "flag" is warranted.
- Minimum value for S should be reexamined

Thank You.

Questions?

CTOD Values - All Binders Tested Thus Far

Extension Rate = 100mm/min, T = 25°C

CTOD Values – Polymer Modified

Extension Rate = 100mm/min, T = 25°C

CTOD Values – Unmodified

			High Temperature Performance Grade								
		88	82	76	70	64	58	52	46		
ance Grade	-22	37	34	31	28 <u>8.6</u>	25	22	19	16		
rature Performa	-28	34	31	28	25 <u>7.8</u>	22	19	16	13		
Low Tempe	-34	31	28	25	22	19 <u>12</u>	16 <u>8.1</u>	13 <u>10</u>	10		

Extension Rate = 100mm/min, T = 25°C

CTOD Values for Various Tested Binders

PG 88 -x	x PG 82 -xx	р д 76 -хх	РG 70 -хх	РG 64 -хх	PG 58 -xx	PG 52 -xx	РG 46 -хх
33.4	34.5	53.8	49.6	43.7	38.8	15.3	47.3
		46.5	27.6	33.8	35.0	10.0	
		23.3	15.7	30.1	27.5		
		16.8	8.6	16.9	24.1		
		9.8	7.8	16.0	12.6		
				15.6	8.1		
				15.0			
				12.0			
				10.6			
				9.7			
			PG xx -22	PG xx -28	PG xx -34		
			33.4	53.8	70.7		
			30.1	46.5	49.6		
			23.3	38.8	47.3		
			16.8	34.5	43.7		
			9.7	27.6	35.0		
			8.6	27.5	33.8		
				24.1	16.0		
				16.9	15.3		
				15.6	15.0		
				15.7	12.0		
				12.6	10.0		
				10.6	8.1		
Extension	Extension Rate – 100mm/mi			9.8			
	1100 = 10		,	7.8			

■ T = 25°C

Impact of REOB on Crossover frequency and Rheological index

57